Electromagnetic coupling of spins and pseudospins in bilayer graphene
نویسندگان
چکیده
منابع مشابه
Spin–orbit coupling in a graphene bilayer and in graphite
The intrinsic spin–orbit interactions in bilayer graphene and in graphite are studied, using a tight binding model and an intra-atomic E LE S coupling. The spin–orbit interactions in bilayer graphene and graphite are larger, by about one order of magnitude, than the interactions in single-layer graphene, due to the mixing of π and σ bands by interlayer hopping. Their values are in the range 0.1...
متن کاملMagnetopolariton in bilayer graphene: A tunable ultrastrong light-matter coupling
Tao Liu1 and Qi Jie Wang1,2,* 1NOVITAS, Nanoelectronics Centre of Excellence, and OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 2CDPT, Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Recei...
متن کاملBilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.
Symmetry-breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field, electron interactions can cause spontaneous symmetry-breaking within the spin and valley degrees of fr...
متن کاملConduction coefficient modeling in bilayer graphene based on schottky transistors
Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...
متن کاملGraphene Edge Spins: Spintronics and Magnetism in Graphene Nanomeshes
We have fabricated low-defect graphene nanomeshes (GNMs) by using a non-lithographic method and observed large-amplitude ferromagnetism even at room temperature, only when pore edges of the GNMs were hydrogenterminated. The observed correlation between the inter-pore spacing and magnetism and also magnetic force microscope observations suggest that it is attributed to polarzied electron spins l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.91.205312